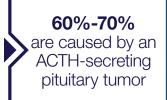
Cushing's Disease

A GUIDE TO IDENTIFYING, DIAGNOSING, AND TREATING CUSHING'S DISEASE

CLASSIC CD FEATURES MAY NOT ALWAYS PRESENT⁶


Cushing's disease (CD) is a rare hormonal disorder caused by a pituitary adenoma that secretes excess adrenocorticotropic hormone (ACTH)^{1,2}

• Excess ACTH stimulates the adrenal glands to overproduce cortisol, leading to the clinical manifestations of CD¹

CD is rare* and serious

- Prevalence of nearly ≈40 cases per million³
- 1.2 to 2.4 new cases/million/year³
- 3× more likely to develop in women, most commonly between ages 30 and 60^{3,4}

ALTHOUGH RARE, CD IS THE MOST PREVALENT OF ALL CUSHING'S SYNDROME CASES⁵

≈20%-30%
 are caused by primary
 adrenocortical tumors

5%-10% are caused by ectopic ACTH-secreting non-pituitary tumors

The signs and symptoms of CD can be confusing^{6,7}

- Signs and symptoms vary from patient to patient
- Not all signs and symptoms are obvious, especially early in the progression
- Milder hypercortisolism may not present classically; it may present as a constellation of subtle or inexplicable signs and symptoms

On average, it takes 5 to 7 years before CD is diagnosed⁸

Consider CD when signs or symptoms cannot be explained with any other diagnosis

	Signs and Symptoms	Magazi
	Hair loss ¹²	
⚠	Plethora ¹¹	
	Hirsutism ^{10,11}	2
	Dorsocervical fat pad ^{10,11}	
	Supraclavicular fat pad ^{10,11}	
⚠	Purpura with no obvious trauma ¹¹	
	Central obesity, unexplained weight gain ^{10,11}	- a hand
⚠	Reddish-purple striae ^{10,11}	LO LALLA
	Thin skin ^{10,11}	
⚠	Proximal muscle weakness ^{10,11}	0
\wedge	= Classic Discriminatory Symptom.	

Clinical suspicion of CD may arise without a complete picture of classic discriminatory symptoms, especially if other comorbidities are present^{10,11}

Clinical Features

- Anxiety or depression¹¹
- Obstructive sleep apnea¹³

Fatigue^{6,7}

Insomnia⁶

Unexplained osteoporosis¹¹

Insulin resistance¹⁰

Carbohydrate intolerance¹⁰

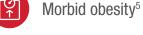
Diabetes mellitus type 210

Hypertension^{10,11}

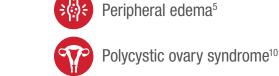
Dyslipidemia^{6,10}

Irregular menses¹¹

Low libido¹¹


CD CAN BE CONFUSED WITH MORE COMMON MEDICAL CONDITIONS^{6,7}

Overlapping comorbidities may make diagnosis even more challenging^{6,14}



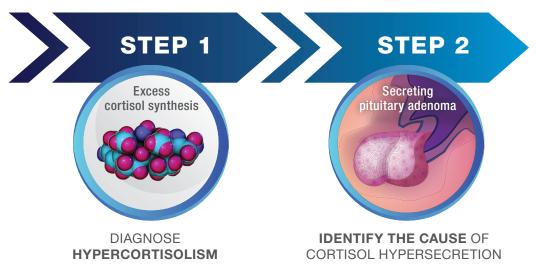
Depression or other psychiatric disorders⁶

Menstrual irregularities⁶

When present with any of the discriminatory symptoms of hypercortisolism, consider CD as the cause of other comorbidities, such as⁶:

Cardiovascular disease

Morbid obesity


Glucocorticoid resistance

- Poorly controlled diabetes
- Cognitive deficits

Poorly controlled diabetes⁶

- Thromboembolic disease Infections
- Psychiatric deficits

DIAGNOSING CD IS A 2-STEP APPROACH¹⁵

GUIDELINES RECOMMEND USE OF AT LEAST TWO DIFFERENT TESTS¹⁴

Tests are complementary and should corroborate each other¹⁴

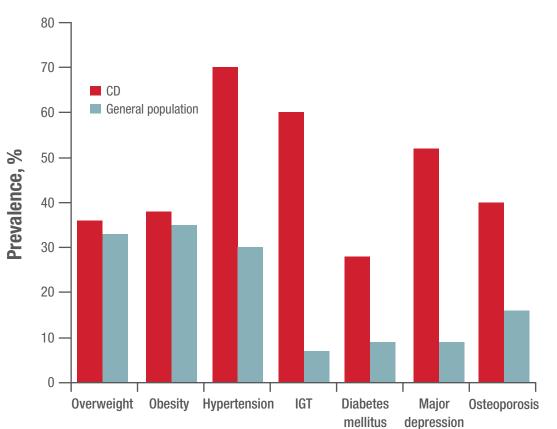
Selections of tests should be individualized to minimize false positives/negatives

TEST	DESCRIPTION	
24-hour UFC level	 Measures free cortisol filtered by the kidney over 24 hours¹⁶ Sensitivity is 45%-71% with 100% specificity¹⁶ 	 Sensitiv Need at
Late-night salivary cortisol	 Measures salivary cortisol levels, commonly by an enzyme-linked immunosorbent assay (ELISA)¹⁶ Sensitivity and specificity are >90%-95%¹⁶ 	 Need at Test mathose w High se Cortisol are at the to its di May noo obesity
Overnight 1-mg DST	 Serum cortisol is measured by RIA Cutoff for serum cortisol is <1.8 μg/dL¹¹ Sensitivity is >95%¹² 	 80% sp Women false-po
Longer low-dose DST (0.5 mg q6h [2 mg/d] for 48 h)	 Dexamethasone is a synthetic glucocorticoid that normally suppresses ACTH and cortisol¹¹ High sensitivity for diagnosis is maintained if the serum concentration of cortisol cutoff is <1.8 μg/dL¹¹ 	 Absorpting from particular of both Simultar recommended dexame

ACTH=adrenocorticotropic hormone; DST=dexamethasone suppression test; RIA=radioimmunoassay; UFC=urinary free cortisol.

Magnetic resonance imaging (MRI) may confirm presence of a pituitary tumor and a diagnosis of CD¹⁸

- MRI reveals a pituitary adenoma in 40%-60% of cases of CD¹⁵
- Most ACTH secreting adenomas are microadenomas <1 cm in diameter and difficult to detect¹⁵
- 85%-87% of patients may present with a microadenoma at the time of diagnosis¹⁹
- Even in the absence of a positive MRI, patients with biochemical testing indicative of CD should be referred to an experienced pituitary surgeon for evaluation¹⁵


CONSIDERATIONS

- ivity may not be optimal for initial screening¹⁶ at least two measurements¹¹
- at least two measurements¹¹
- ay not be appropriate for shift workers or with variable bedtimes¹
- ensitivity and ease of testing¹¹
- ol testing done at night, when cortisol levels their nadir, may be useful for assessing changes diurnal pattern¹³
- ot be as accurate for those with diabetes or y and hypertension¹¹
- pecificity for diagnosing Cushing's disease¹¹ n taking birth control may have positive results¹
- tion and metabolism of dexamethasone may vary atient to patient, which may influence the result the overnight and 48-hour DST¹¹
- aneous cortisol and dexamethasone tests are mended to confirm adequate plasma ethasone levels¹

THE DANGERS OF CUMULATIVE EXPOSURE TO EXCESS CORTISOL^{3,20}

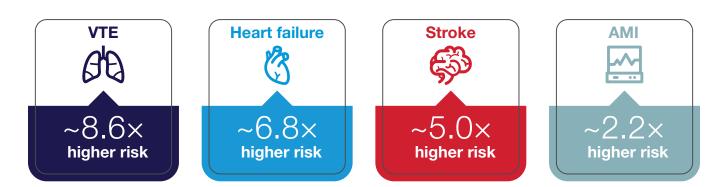
CD patients experience comorbidities at a higher rate than the general population¹

PREVALENCE OF COMORBIDITIES ASSOCIATED WITH CD¹

IGT=impaired glucose tolerance.

- Although biochemical remission or a cure is usually associated with significant clinical improvement, some comorbidities may not completely normalize²⁰
- Hypertension and diabetes are the main long-term controllable risk factors for cardiovascular events and mortality; repeated follow-up is mandatory²⁰

When CD and its associated comorbidities are successfully treated, the standardized mortality rate improves²⁰


THE LONGER THE LENGTH OF HYPERCORTISOLISM **EXPOSURE, THE GREATER THE MORTALITY RISK^{1,21}**

Even transient exposure to excess cortisol is associated with increased mortality²¹

 Evaluating and treating the long-term negative effects of chronic hypercortisolism may be important to reduce morbidity, improve quality of life, and reduce the long-term mortality associated with CD²⁰

Uncontrolled chronic hypercortisolism leads to elevated risks of multi-system morbidity and mortality^{22,23}

• Patients with chronic, uncontrolled hypercortisolism have a ~3.5-5x higher mortality risk than in the general population²⁴

• The risk of all-cause morbidity and mortality decreases with remission, but is not entirely eliminated²³

The predicted mortality rate is **nearly 2x higher** in remission²⁶

6

PATIENTS WITH CHRONIC EXPOSURE TO EXCESS CORTISOL ARE AT **INCREASED RISK FOR ALL-CAUSE MORBIDITY AND MORTALITY²⁵**

for patients with persistent CD vs that for patients

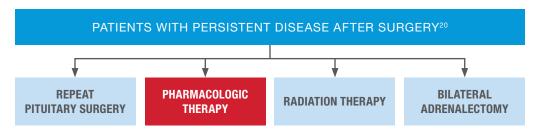
PITUITARY SURGERY IS THE RECOMMENDED FIRST-LINE TREATMENT FOR CD²³

Pituitary surgery outcomes vary and recurrence is possible²³

ANTERIOR PITUITARY TUMORS AND SURGICAL SUCCESS RATES

	MICROADENOMAS	MACROADENOMAS
SIZE	• <10 mm in diameter ²⁷	• >10 mm in diameter ²⁷
FREQUENCY	 Most common⁴ Account for ≈90% of tumors in patients with CD²⁷ 	 Infrequent²⁸ Account for ≈10% of tumors in patients with CD²⁷
INITIAL SURGICAL Success Rate	89% ²⁹	63% ²⁹

• Pharmacologic therapy remains an option for patients with persistent disease after surgery or for those who are not candidates for or refuse surgery³


Monitor cortisol levels closely after postsurgical tumor resection

- Within 48 hours postsurgery, most patients in remission* develop a glucocorticoid withdrawal syndrome associated with circulating cortisol levels of $<2 \mu g/dL^{15}$
- Serum cortisol levels $<2 \mu g/dL$ after surgery are associated with remission and a low recurrence rate of approximately 10% at 10 years³¹

*Remission is generally defined as morning serum cortisol values <5 µg/dL (<138 nmol/L) or UFC <28-56 nmol/d $(<10-20 \mu g/d)$ within 7 days of selective tumor resection.²²

PHARMACOTHERAPY CAN BE USED TO MANAGE HIGH CORTISOL LEVELS²⁰

Pharmacologic therapy may be an appropriate therapeutic option for patients with persistent disease after surgery³

Which patients are appropriate for pharmacotherapy?^{3,32}

- Those who are ineligible or unwilling to undergo transsphenoidal surgery (TSS)
- As a second-line treatment in patients for whom TSS did not induce remission (before considering bilateral adrenalectomy or radiotherapy)
- Those waiting for the effects of radiotherapy

THERAPEUTIC TARGETS IN CD33

PITUITARY GLAND

- Somatostatin analog: pasireotide[†]
- Dopamine agonist: cabergoline


ADRENAL GLAND

- Steroidogenesis inhibitors: ketoconazole, levoketoconazole[‡], metyrapone, and osilodrostat[†]
- Adrenolytic drug: mitotane

Antagonist: mifepristone

GLUCOCORTICOID RECEPTOR

— Approved in the US for the control of diabetes or glucose intolerance secondary to hypercortisolism in patients who failed surgery or are not surgical candidates²⁰

Regularly evaluate cortisol levels and other variables according to the prescribing information for individual pharmacologic interventions to confirm therapeutic response²⁰

ONGOING TESTING AND MONITORING IS **RECOMMENDED AT REGULAR INTERVALS²⁰**

IDENTIFY AND CONTROL CORTISOL LEVELS²⁰

Monitor to ensure that the patient maintains normalized cortisol levels³

TESTS TO MONITOR CD AND FOR ONGOING SCREENING^{20,33}

Guideline recommendations for ongoing screening and long-term follow-up²⁰

- Monitor cortisol levels regularly to assess patient response to surgical or pharmacologic therapy
- Adjust pharmacologic therapies to address hypo- or hypercortisolism
- Treat specific comorbidities associated with CD (such as psychiatric disorders, diabetes, hypertension, hypokalemia, infections, dyslipidemia, osteoporosis, and poor physical fitness) throughout the patient's life until resolution
- Educate patients and families about the clinical features of remission

Monitor the signs and symptoms of hypercortisolism to help reduce life-threatening complications

When signs of life-threatening complications of CD arise... The guidelines recommend urgent treatment of hypercortisolism (within 24-72 hours)²⁰

TREAT IMMEDIATELY IF YOU SEE SIGNS OF ANY OF THE FOLLOWING:²⁰

Infection

Acute psychosis

EXPLORE ADDITIONAL INFORMATION ABOUT DIAGNOSIS AND TREATMENT OF CD:

pituitarysociety.org

endocrine.org

Pulmonary thromboembolism

niddk.nih.gov

rarediseases.org

TREATMENT OF THE CAUSE, AND DISEASE REMISSION, CAN IMPROVE THE LIVES OF YOUR PATIENTS WITH CD²⁰

- Patients with CD have reduced quality of life compared to patients with other pituitary tumors²⁰
- Continue to test for CD recurrence throughout the patient's life³³

Cumulative exposure to excess cortisol is associated with deleterious effects¹

ACCORDING TO THE ENDOCRINE SOCIETY CLINICAL PRACTICE GUIDELINES, YOU CAN IMPROVE THE LIVES OF YOUR PATIENTS WITH CD BY ACHIEVING REMISSION²⁰

References: 1. Feelders RA, Pulgar SJ, Kempel A, Pereira AM. The burden of Cushing's disease: clinical and health-related quality of life aspects. Eur J Endocrinol. 2012;167(3):311-326. 2. Lake MG, Krook LS, Cruz SV. Pituitary adenomas: an overview. Am Fam Physician. 2013;88(5):319-327. 3. Pivonello R, De Leo M, Cozzolino A, Colao A. The treatment of Cushing's disease. Endocr Rev. 2015;36(4):385-486. 4. Nishioka H, Yamada S. Cushing's disease. J Clin Med. 2019;8(11)1951:1-56. 5. Bertagna X, Guignat L, Groussin L, Bertherat J. Cushing's disease. Best Pract Res Cl En. 2009;23:607-623. 6. Nieman LK. Cushing's syndrome: update on signs, symptoms and biochemical screening. Eur J Endocrinol. 2015;173(4):1-10. 7. Boscaro M, Arnaldi G. Approach to the patient with possible Cushing's syndrome. J Clin Endocrinol Metab. 2009;94(9):312-1313. B. Papoian V, Biller BM, Webb SM, Campbell KK, Hodin RA, Phitayakorn R. Patients' perception on clinical outcome and quality of life after a diagnosis of Cushing syndrome. Endocr Pract. 2016;22(1):51-67. 9. US Food and Drug Administration. Developing products for rare diseases & conditions. Updated December 20, 2018. Accessed November 18, 2021. https://www.fda.gov/industry/developing-products-rare-diseases-conditions. 10. Arnaldi G, Angeli A, Atkinson AB, et al. Diagnosis and complications of Cushing's syndrome: a consensus statement. J Clin Endocrinol Metab. 2003;88(12):5593-5602. 11. Nieman LK, Biller BM, Findling JW, et al. The diagnosis of Cushing's syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008;93(5):1526-1540. 12. Braun LT, Riester A, OBwald-Kop A, et al. Toward a diagnostic score in Cushing's syndrome. Front Endocrinol (Lausanne). 2019;10(766):1-12. doi: 10.3389/ fendo.2019.00766. 13. Kuan EC, Peng KA, Suh JD, et al. Otolaryngic manifestations of Cushing's disease. Ear Nose Throat J. 2017;96(8):28-30. 14. Nieman LK. Recent updates on the diagnosis and management of Cushing's syndrome. Endocrinol Metab. 2018;33:139-146. 15. Lonser RR, Nieman L, Oldfield EH. Cushing's disease: pathobiology, diagnosis, and management. J Neurosurg. 2017;126(2):404-417. 16. Findling JW, Raff H. Cushing's syndrome: important issues in diagnosis and management. J Clin Endocrinol Metab. 2006;91(10):3746-3753. 17. Raff H., Raff JL., Findling JW. Late-night salivary cortisol as a screening test for Cushing's syndrome. J Clin Endocrinol Metab 1998;83(8):2681-2686. 18. Cushing's Syndrome: National Endocrine and Metabolic Diseases Information Service. National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK). NIH Publication No. 08–3007. July 2008. 19. Zada G. Diagnosis and multimodality management of Cushing's disease: a practical review. Int J Endocrinol. 2013;2013:893781:1-7. 20. Nieman LK, Biller BM, Findling JW, et al. Treatment of Cushing's syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2015;100(8):2807-2831. 21. Dekkers OM, Biermasz NR, Pereira AM, et al. Mortality in patients treated for Cushing's disease is increased, compared with patients treated for nonfunctioning pituitary macroadenoma, J Clin Endocrinol Metab. 2007;92(3):976-981, 22, Lacroix A, Feelders RA, Stratakis CA, et al. Cushing's syndrome, Lancet. 2015;386(9996):913-927, 23, Fleseriu M, Auchus R, Bancos I. et al. Consensus on diagnosis and management of Cushing's disease: a guideline update. Lancet. 2021; https://doi.org/10.1016/S2213-8587(21)00235-7. 24. Fleseriu M, Castinetti F. Updates on the role of adrenal steroidogenesis inhibitors in Cushing's syndrome: a focus on novel therapies. Pituitary. 2016;19(6):643-653. 25. Dekkers OM, Horvath-Puho E, Jorgensen JOL, et al. Multisystem morbidity and mortality in Cushing's syndrome: a cohort study. J Clin Endocrinol Metab. 2013;98(6):2277-2284. 26. van Haalen FM, Broersen LHA, Jorgensen JO, Pereira AM, Dekkers OM. Management of endocrine disease: Mortality remains increased in Cushing's disease despite biochemical remission: a systematic review and meta-analysis. Eur J Endocrinol. 2015;172(4):R143-R149. 27. Tritos NA, Biller BMK, Swearinger B. Management of Cushing disease. Nat Rev Endocrinol. 2011;7(5):279-289. 28. Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing's syndrome. Lancet. 2006;367(9522):1605-1617. 29. Johnston PC, Kennedy L, Hamrahian AH, et al. Surgical outcomes in patients with Cushing's disease: the Cleveland clinic experience. Pituitary. 2017;20(4):430-440. 30. Patil CG, Prevedello DM, Lad SP, et al. Late recurrences of Cushing's disease after initial successful transsphenoidal surgery. J Clin Endocrinol Metab. 2008;93(2):358-362. 31. Biller BM, Grossman AB, Stewart PM, et al. Treatment of adrenocorticotropin-dependent Cushing's syndrome: a consensus statement. J Clin Endocrinol Metab. 2008;93(7):2454-2462. 32. Morris D, Grossman A. The medical management of Cushing's syndrome. Ann N Y Acad Sci. 2002;970:119-133. 33. Ferriere A, Tabarin A. Cushing's syndrome: treatment and new therapeutic approaches. Best Pract Res Clin Endocrinol Metab. 2020;34(2):1-16.

Trademarks, registered or otherwise, are the property of their respective owner(s). © 2022 Recordati Rare Diseases Inc. All rights reserved. NP-CUSH-US-0050